
Why mean squared error and `2 regularization?

A probabilistic justification.∗

Avital Oliver

March 2017

When you solve a regression problem with gradient descent, you’re minimiz-
ing some differentiable loss function. The most commonly used loss function is
mean squared error (aka MSE, `2 loss). Why? Here is a simple probabilistic
justification, which can also be used to explain `1 loss, as well as `1 and `2
regularization.

1 What is regression?

What is a regression problem? In simplest form, we have a dataset D = {(xi ∈
Rn, yi ∈ R)} and want a function f that approximately maps xi to yi without
overfitting. We typically choose a function (from some family Θ) parametrized
by θ. A simple parametrization is fθ : x 7→ x · θ where θ ∈ Θ = Rn – this is
linear regression. Neural networks are another kind of parametrization.

Now we use some optimization scheme to find a function in that family that
minimizes some loss function on our data. Which loss function should we use?
People commonly use mean squared error (aka `2 loss): 1

|D|
∑

(yi − fθ(xi))
2.

Why?

2 Two assumptions: (1) Data is noisy; (2) We
want the most likely model

Let’s start with a few assumptions:

1. The data is generated by a function in our family, parametrized by θtrue,
plus noise, which can be modeled by a zero-mean Gaussian random vari-
able:

fdata(x) = fθtrue(x) + ε (1)

ε ∼ N (0, σ2) (2)

(Why Gaussian? We’ll get back to this question later.)

∗Read and comment on the latest version of this note at http://aoliver.org/why-mse

1

http://aoliver.org/why-mse

2. Given the data, we’d like to find the most probable model within our fam-
ily. Formally, we’re looking for parameters θ with the highest probability:

arg max
θ

(P (θ | D)) (3)

With these assumptions, we can derive `2 loss as the principled error metric
to optimize. Let’s see how.

3 Probability of data given parameters

First, observe that with these two assumptions, we can derive the probability
of a particular datapoint (x, y):

P ((x, y) ∈ D | θ) = P (y = fθ(x) + ε | ε ∼ N (0, σ2))) (4)

= N (y − fθ(x); 0, σ2) (5)

=
1√

2πσ2
e−

(y−fθ(x)
2

2σ2 (6)

The math will be less complicated if we use log probability, so let’s switch
to that here:

logP ((x, y) ∈ D | θ) = log
1√

2πσ2
e−

(y−fθ(x))
2

2σ2 (7)

= − (y − fθ(x))2

2σ2
+ const. (8)

Notice the (y − fθ(x))2 term above – that’s how we’re going to get the `2
loss. (Where did it come from? Could we have gotten something else there?)

Now we can extend this from the log probability of a data point to the log
probability of the entire dataset. This requires us to assume that each data
point is independently sampled, commonly called the i.i.d. assumption.

logP (D | θ) =
∑

logP (yi = fθ(xi) + ε | ε ∼ N (0, σ2))) (9)

= − 1

2σ2

∑
x,y∈D

(y − fθ(x))2 + const. (10)

That’s a simple formula for the probability of our data given our parameters.
However, what we really want is to maximize the probability of the parameters
given the data, i.e. P (θ | D).

2

4 Minimizing MSE is maximizing probability

We turn to Bayes’ rule, P (θ | D) ∝ P (D | θ)P (θ), and find that:

logP (θ | D) = logP (D | θ) + logP (θ) + const. (11)

=

− 1

2σ2

∑
x,y∈D

(y − fθ(x))2

 + logP (θ) + const. (12)

The term in the left-hand side logarithm, P (θ | D), is called the poste-
rior distribution. The two non-constant right-hand side terms also have names:
P (D | θ) is the likelihood, and P (θ) is the prior distribution (the likelihood does
not integrate to 1, so it’s not a distribution). The prior is a distribution we
have to choose based on assumptions outside of our data. Let’s start with the
simplest – the so-called uninformative prior P (θ) ∝ 1, which doesn’t describe
a real probability distribution but still lets us compute the posterior. Choos-
ing an uninformative prior corresponds to making no judgement about which
parameters are more likely. If we choose the uninformative prior, we get:

logP (θ | D) = logP (D | θ) + logP (θ) + const. (13)

= − 1

2σ2

∑
x,y∈D

(y − fθ(x))2 + const. (14)

Ok woah. We’re there. Maximizing P (θ | D) is the same as minimizing∑
(yi−fθ(xi))2. The formal way of saying this is that minimizing mean squared

error maximizes the likelihood of the parameters. In short, we’ve found the
maximum likelihood estimator (MLE).

5 If we change our assumptions, though...

We can also change our assumptions and see what happens:

1. What if we change the variance on the noise? The log posterior which
we’re maximizing changes by a constant factor, so the same model is most
likely. We only needed to assume that the noise is drawn from some
zero-mean Gaussian. (The variance matters if we place a prior as in (3)
below)

2. If we assume a different type of noise distribution, we’d derive a different
loss function. For example, if we model the noise as being drawn from a
Laplace distribution, we’d end up with `1 error instead.

3. If we actually place a prior on our parameters we’d get a regularization
term added to the log posterior that we’re maximizing. For example,

3

if the prior is a zero-mean Gaussian, we’d get `2 regularization. And if
the prior is a zero-mean Laplacian, we’d get `1 regularization. When we
set a prior, we call the most likely parameters the maximum a posteriori
estimate (MAP).

4. What if our models have different types of parameters, such as the layers
in a neural network? We would still want to place a prior on them to
avoid overfitting, but we’d want a different prior for different layers. This
corresponds to choosing different regularization hyperparameters for each
layer.

But don’t believe me – derive these yourself!

4

	What is regression?
	Two assumptions: (1) Data is noisy; (2) We want the most likely model
	Probability of data given parameters
	Minimizing MSE is maximizing probability
	If we change our assumptions, though...

